CutFEM based on extended finite element spaces

نویسندگان

چکیده

Abstract We develop a general framework for construction and analysis of discrete extension operators with application to unfitted finite element approximation partial differential equations. In methods so called cut elements intersected by the boundary occur these must in stabilized some way. Discrete provides such stabilization modification space close boundary. More, precisely is extended from stable interior over way which also guarantees optimal properties. Our applicable all standard nodal based various order regularity. an abstract theory elliptic problems associated parabolic time dependent equations derive priori error estimates. finally apply this examples different including interface problems, biharmonic operator sixth triharmonic operator.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splines and Finite Element Spaces

Splines are piecewise polynomial functions that have certain “regularity” properties. These can be defined on all finite intervals, and intervals of the form (−∞, a], [b,∞) or (−∞,∞). We have already encountered linear splines, which are simply continuous, piecewise-linear functions. More general splines are defined similarly to the linear ones. They are labeled by three things: (1) a knot sequ...

متن کامل

Extended graphs based on KM-fuzzy metric spaces

This paper,  applies the concept  of KM-fuzzy metric spaces and  introduces a novel concept of KM-fuzzy metric  graphs based on KM-fuzzy metric spaces.  This study, investigates the finite KM-fuzzy metric spaces with respect to metrics and KM-fuzzy metrics and constructs KM-fuzzy metric spaces on any given non-empty sets. It tries to  extend   the concept of KM-fuzzy metric spaces to  a larger ...

متن کامل

Extended Finite Element Method for Statics and Vibration Analyses on Cracked Bars and Beams

In this paper, the extended finite element method (XFEM) is employed to investigate the statics and vibration problems of cracked isotropic bars and beams. Three kinds of elements namely the standard, the blended and the enriched elements are utilized to discretize the structure and model cracks. Two techniques referred as the increase of the number of Gauss integration points and the rectangle...

متن کامل

A Super - Element Based on Finite Element Method for Latticed Columns Computational Aspect and Numerical Results

This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new elem...

متن کامل

A Super - Element Based on Finite Element Method for Latticed Columns Computational Aspect and Numerical Results

This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new elem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2022

ISSN: ['0945-3245', '0029-599X']

DOI: https://doi.org/10.1007/s00211-022-01313-z